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Abstract. This paper presents a contactless temperature monitoring and patient 
identification system intended to meet stringent sanitary requirements in 
modern healthcare. By integrating a Raspberry Pi 4, an MLX90640 thermal 
sensor accurate to ±1 °C, and a Pi Camera Module 2 with 90–95% face 
recognition accuracy, it enables rapid, noninvasive detection of abnormal 
temperatures while minimizing staff-patient contact. The sensor’s 24 × 32 
infrared array is fused with RGB frames for temperature assessment and 
identity verification. Controlled trials at ambient temperatures of 16 °C, 24 °C, 
and 26 °C consistently record ~33 °C on healthy foreheads, closely matching 
results from standard infrared thermometers. Minor temperature reductions 
occur with increasing distance, highlighting the need for proper alignment. 
Automated logging in a local SQLite database streamlines clinical workflows, 
allowing immediate retrieval of recorded data. Additionally, the approach 
significantly lowers staff workload by automating identification tasks, 
promoting safer, more efficient procedures. The findings underscore 
cost-effectiveness and scalability for continuous screening in diverse clinical 
environments, while reducing cross-contamination risks through rapid, 
contactless operation. Future efforts will broaden the dataset for enhanced 
algorithmic robustness, incorporate multi-parameter assessments of vital signs, 
and refine sensor calibration across variable conditions.  
Overall, this solution offers a promising avenue toward improved operational 
efficiency and infection control, aligning with contemporary standards for 
data-driven medical practice. 
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1​ Introduction 
The outbreak and global transmission of COVID-19 are unprecedented, resulting in 
extraordinary challenges to health care infrastructures across the globe. It has 
irreversibly changed global public health paradigms and exposed glaring weaknesses 
in our healthcare infrastructure and infection containment strategies. As of 2023, the 
World Health Organization (WHO) reports over 765M confirmed cases and nearly 
7M deaths globally — demonstrating the ongoing threat of viral transmission and the 
need for scalable, adaptive solutions.  Gholami et al. [1] reported that during the early 
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months of the pandemic with a meta-analysis of 28 studies involving a total of 
119,883 healthcare workers around the world, about 52% of healthcare workers who 
were tested were confirmed positive for COVID-19. In absolute terms, the global toll 
is also shocking: an estimated 80,000–180,000 healthcare workers died from 
COVID-19 between January 2020 and May 2021 according to WHO, with the most 
likely number around 115,500 deaths [2]. On the other hand, the WHO has urged that 
concerted action will need to be taken to safeguard health care workers during and in 
the aftermath of the pandemic. Such measures include ensuring the availability of 
adequate personal protective equipment (PPE), prioritizing vaccination for medical 
personnel, and systematically monitoring infection rates and morbidity among 
medical staff. The post-pandemic surge in telemedicine has given rise to compact 
remote patient monitoring (RPM) systems capable of providing near-real-time alerts. 
Ko et al. [3] demonstrated the clinical viability of such systems. Systematic reviews 
by Abdulmalek et al. [4] and Rahaman et al. [5] converge on the need for secure, 
low‑latency pipelines and energy‑efficient design, while also highlighting the need of 
low-cost devices and problems associated with poor analytics on the fringes.​
 
Fever is still one of the key symptoms the medical community relies on for early 
detection, but conventional means of screening — handheld thermometers, manual 
checks — have always struggled with reliability, efficiency and safety. Furthermore, 
even contactless temperature measurement usually needs a dedicated person to record 
the results and check that the equipment works. Such increases time costs and 
epidemiological risk. Modern hospitals thus need efficient, automated systems to help 
reduce the workloads of healthcare staff and the risks of infection. Mobile robots 
with low-cost but powerful hardware can perform preliminary monitoring tasks 
—like detecting temperature and identifying patients—while averting direct human 
contact. 

Manickam et al. [6] highlight the role of artificial intelligence in improving detection 
accuracy and decision-making in IoMT-connected POC devices. Dubey and Tiwari 
[7]  conclude that Artificial Intelligence (AI) algorithms that can successfully 
categorize patients rather than just enhance device functionality are what the market 
needs. 

This innovation in automated health monitoring, particularly in high-risk conditions, 
has been catalyzed by recent advances in AI and Internet of Things (IoT) technologies 
in Elhanashi et al. [8] Kamil et al. [9]. Using an AMG8833 thermal imager, Abdullah 
et al. [10] implemented an ultrasonic sensor investigation and a pyrometer improved 
the temperature data accuracy with multiple linear regression to calibrate the data 
pipeline. During the COVID-19 pandemic,  Astawa et al. [11] offered contactless 
solutions like Roboswab as efficient for early diagnosis that integrate thermal 
imaging with face recognition. Mabboux and Steinwendner [12] demonstrated 
embedded devices that can implement thermal screening are scalable and 
cost-effective and can be deployed widely during health emergencies.  Spasov et al. 
[13]  study demonstrate that an inexpensive MLX90640 infrared array connected to 
the Wi-Fi card is capable of generating indoor heat maps and transmitting them via a 
web interface, offering an economical alternative to classic IR cameras. 
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 In response to these issues, the current study presents an alternative, autonomous 
robotic solution for contactless temperature measurement combined with facial 
recognition for patient identification. The system consists of an MLX90640 thermal 
sensor and a Pi Camera 2, both controlled by a Raspberry Pi 4 microcomputer. The 
modules are attached to a mobile robotic platform specifically designed for these 
operations and operate either autonomously or are teleoperated via 
programmed paths in high-risk / congested zones. The proposed platform utilizes 
advanced machine vision algorithms and embedded computing to enable accurate 
detection of body temperature anomalies and specific person identification for 
reduced cross-infection risk and effective medical intervention. 
The flexibility of this platform is inherently suited to integration into advanced 
telemedicine systems, and the creation of so-called “smart hospital” ecosystems to 
enhance patient throughput, safety, and outcomes. 

2​ Material and Method 

2.1​ System for contactless temperature screening and face recognition  

Our proposed system uses a Raspberry Pi 4 as the central processing unit, selected for 
its computational power, versatility, and cost-effectiveness in edge computing 
applications. The MLX90640 thermal sensor, a compact and high-resolution infrared 
array, is used for contactless temperature measurement, which provides accurate 
temperature readings across a wide field of view. In addition to the thermal sensor, the 
Pi Camera 2 is integrated for capturing high-resolution visual images, for face 
recognition and identification functionalities. The integration of thermal imaging with 
face recognition provides a dual-modality approach. The system takes advantage of 
the benefits of face recognition, which include user-friendliness and the absence of 
physical contact, unlike conventional methods such as card recognition or fingerprint 
scanning [4]. 
By collecting thermal data in conjunction with synchronized RGB images, we sought 
to determine the efficacy of this low-cost embedded system for real-time human 
subject screening and identification. 

 

 

Figure. 1.  System architecture for contactless temperature screening and face recognition. 
 
The system workflow appears in Figure 1 as a schematic diagram. The Pi Camera 2 
and  MLX90640 serve as distinct sensing modalities which receive the patient's face 
as their principal input  on the left side. Real-time signal processing occurs on the 
Raspberry Pi after both data streams enter the  system. The Pi Camera 2 delivers a 
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stream of digital images for face detection and recognition purposes while  the 
MLX90640 provides temperature values from its 24 × 32 IR array pixels.  The 
Raspberry Pi uses OpenCV computer vision library to combine the complementary 
data sources and produces a result that  shows temperature measurements and patient 
name identification. 

 

Figure. 2. Physical hardware layout of the system. 
 
The schematic (see Fig.2) shows the core components and wiring of the proposed 
contactless temperature screening platform. A 5 V Li-ion battery (left) supplies power 
to the Raspberry Pi 4, enabling a portable or mobile setup that does not rely on 
stationary power sources. The MLX90640 thermal sensor is mounted above the Pi, 
interfaced via the I²C bus lines (SCL and SDA), allowing the board to acquire infrared 
thermal data in real time. Meanwhile, the Pi Camera 2 connects to the Pi through its 
dedicated CSI (Camera Serial Interface) ribbon cable, capturing high-resolution color 
images of the subject. An LCD IPS screen on the right displays the Raspberry Pi’s 
desktop environment. 

A.​ Raspberry Pi 4 Model B 
The Raspberry Pi 4 Model B represents a paradigm in compact, low-cost computing 
that is particularly well-suited for embedded systems research and real-time 
applications. In the context of our study, the Raspberry Pi 4 Model B serves as the 
central hub for orchestrating sensor data acquisition and processing. It runs a 
Linux-based operating system (Raspberry Pi OS), which provides a stable and 
open-source environment conducive to both rapid prototyping and long-term 
deployment. The board utilizes a USB Type-C power input capable of delivering a 
steady 5 V at 3 A.  

B.​ MLX90640 Thermal Sensor 
The MLX90640 is an advanced microelectromechanical system (MEMS)-based 
infrared thermal sensor designed for cost-effective, two-dimensional thermal imaging 
applications. In our system, the MLX90640 functions as the primary means of 
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capturing temperature data, providing a thermal image. The most important details are 
summarized in table 1. 

Table 1. Specifications of MLX90640 Thermal Sensor. 
Parameter Specification 
Resolution 24 × 32 (768 IR pixels) 
Field of View (FOV)​  55° × 35° 
Temperature Measurement Range –40 °C to +300 °C 
Interface​  I²C 
Refresh Rate 0.5 Hz to 64 Hz 

 
The area of the target object and the distance measured by the module are correlated 
according to the relationships outlined below:  

​ ​ (1) 𝑆 = 𝐷
2⋅𝑡𝑎𝑛α

 
C.​ Pi Camera Module 2 

The Pi Camera Module 2 is an essential imaging component for embedded vision 
applications, making it well-suited for real-time face detection and recognition tasks. 

Table 2. Specifications of Pi Camera Module 2. 
Parameter Specification 

Sensor Sony IMX219, 8-megapixel 
CMOS sensor 

Video Modes 1080p at 30 fps, 720p at 60 fps, 
640 × 480 at higher frame rates 

Field of View​  Approximately 62.2° (diagonal 
FOV) 

Interface​  CSI (Camera Serial Interface) 
Supported Frame Rates Up to 30 fps in full HD 
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The table 2 was constructed based on standard specifications widely 

available for the Pi Camera Module 2. These key points capture the fundamental 
characteristics required for integration in a contactless temperature screening and face 
recognition system, ensuring readers can understand and duplicate the hardware 
configuration. 

Accurate body temperature assessment has emerged as a critical frontier in 
modern medical diagnostics, particularly in the context of infectious disease 
surveillance and preventive healthcare. Traditional thermometric approaches, while 
foundational, often grapple with trade-offs between precision, invasiveness, and 
scalability. Advances in infrared thermography, however, have unlocked novel 
paradigms for non-contact, high-resolution temperature mapping.  

 

Figure. 3. Face recognition and temperature indicating. 
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The impressive accuracy rates of 99.49% in temperature detection and over 94% in 
mask identification showcase the systems reliability and efficiency, making it a 
valuable tool for mitigating the spread of infectious diseases, particularly in high-risk 
settings like nursing homes, as emphasized in Abdullah et al. [10]. The system 
described in the present study attains a 90-95% mean accuracy for the combined tasks 
of face detection and temperature indication. 
Fig. 3 shows the output frame captured by the device. A green rectangular frame 
bounds the face area, while the superimposed label located at the top displays the 
name of the object and the corresponding body temperature estimate (in this case 36.1 
°C). The results of detection and thermal measurements are displayed in the 
embedded platform in real time. 
 

D.​ Database 

 

Figure. 4. Measurement data stored in SQLite database 
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Fig. 4 presents a representative excerpt from the system’s contactless temperature 
screening data in a lightweight SQLite database. Each row corresponds to an 
individual measurement event, including a unique identifier (id), the recognized 
username, the measured temperature in degrees Celsius, and a record_time timestamp 
indicating when the reading was acquired. The final column, 
abnormality_notification, provides an automated assessment of whether the recorded 
temperature is within the normal physiological range or indicates potential fever. 

By leveraging SQLite’s compact footprint and low overhead, the Raspberry Pi 4 can 
reliably store these data without necessitating external server connectivity. This 
architecture is especially advantageous in environments that demand real-time or 
offline operation. Additionally, the system can flag measurements that deviate 
significantly from baseline norms (e.g., “Below Normal” or “Fever 
Detected”)—thereby streamlining triage and early warning procedures in scenarios 
where swift and systematic temperature monitoring is essential. 

3​ Results and discussion 
The main research results can be summarized as follows. Laboratory tests 
demonstrated face recognition accuracy averaging between 90% and 95%, with a 
system response time of under three seconds. The MLX90640 sensor reliably 
measured body temperature within ±1 °C.  
Fig. 5 depicts sample results from the contactless temperature measurement and face 
recognition system at three discrete subject-to-camera distances—50 cm (a), 
100 cm (b), and 150 cm (c). On the left in each subfigure, the Raspberry Pi Camera 2 
captures an RGB image showing the recognized participant (“Madiyar”), with a 
bounding box marking the detected face region and displaying temperature 
measurement. On the right, each thermal image (24 × 32 pixel grid) reflects the 
corresponding MLX90640 output, where the false-color scale ranges from lower 
temperatures (blue) to higher temperatures (red). Notably, the relatively low 
temperature recorded on the subject's forehead is attributed to the measurements being 
conducted in a low-ambient-temperature environment. To ensure accuracy, the 
readings were independently validated using an electronic pyrometer. The rectangular 
region in the thermal images highlights the face area used to compute and display the 
maximum or representative temperature value. 
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Figure. 5. RGB and thermal outputs at varying distances (50 cm, 100 cm, 150 cm) 
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A decline in the measured temperature (e.g., 32.0 °C at 50 cm, 29.5 °C at 100 cm, and 
25.9 °C at 150 cm) occurs as the subject moves further from the thermal sensor. This 
trend arises primarily because the MLX90640, operating at relatively low spatial 
resolution, integrates a larger portion of the cooler background at greater distances, 
effectively reducing the apparent temperature reading of the face. Additionally, 
infrared irradiance diminishes with increasing distance, thereby lowering the 
temperature signal recorded per pixel. Nevertheless, the face detection and 
temperature annotation remain stable across all three distances, indicating that the 
combined system can successfully map and overlay thermal data on the subject’s face 
in real time, albeit with diminished temperature precision as distance increases. 

Figure 6. The forehead temperature values obtained using the MLX90640 sensor under three 
ambient conditions (16 °C, 24 °C and 26 °C).  
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Each strip represents the average value on the skin surface of the forehead of a 
healthy subject, and the vertical lines indicate the standard deviation. Mean 
forehead‑temperature measurement error of the MLX90640 sensor decreases from 
~3.0 °C to ~1.0 °C as ambient temperature rises from 16 °C to 26 °C (see Fig. 6). 
According Mah et al. [14] research, thermal imaging cameras can exhibit a 
measurement deviation of up to ±3 °C when used for assessing facial temperature. 
These results are consistent with findings in the literature indicating that ambient 
temperature has a substantial effect on forehead temperature readings. Chen et al. [15] 
found that, specifically, at lower ambient temperatures, significant discrepancies are 
observed between forehead and core (axillary or oral) temperatures, whereas at higher 
ambient temperatures, forehead temperature tends to converge toward core body 
temperature values. 

 
4​ Conclusion 
The results of our research demonstrate that combining an MLX90640 sensor 
(accurate to within ~1 °C) with a Raspberry Pi 4 and a 90–95% accurate face 
recognition module produces a robust, contactless system for patient screening. In 
controlled trials at ambient temperatures of 16 °C, 24 °C, and 26 °C, the device 
reliably measured forehead surface temperatures.  

Furthermore, automating both temperature logging and patient identification 
lowered staff workload and reduced infection risks by minimizing direct contact. 
These findings confirm that the proposed system successfully addresses both 
continuous temperature monitoring and biometric data collection in a single integrated 
setup. Future improvements will address face recognition under poor lighting, 
broaden the dataset to boost algorithmic accuracy, and integrate additional vital-sign 
sensors (e.g., heart rate), paving the way for a fully scalable, data-driven healthcare 
solution. 
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